The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 216287 (TAS3 - Trusted Architecture for Securely Shared Services - www.tas3.eu)
TAS3 Project (48 months, 2008-2011)

• Goals
 - Trusted Architecture for Securely Shareable Services
 - Web Services made secure, *privacy friendly*, and shareable
 - Dashboard for user’s privacy settings and self audit
 - Full audiability, leverage digital signatures
 - Advanced Trust and Privacy Negotiation and Trust Scoring
 - Business and legal model

• Practical
 - Standards based (SAML, ID-WSF, XACML) *interoperable* wirspecs
 - API (Java, C#, PHP, Perl, C/C++)
 - Reference implementation (*zxid.org*)
 - Pilots
 - Exploitation: buy TAS3 enabled components from vendors such as Symlabs, Risaris, Custodix, and Synergetics
TAS3 Trust Network Domains

Audit

Organization A Domains

Audit & Monitor

Model

Modelling & configuration Management

Runtime & Enforcement
Front channel and back channel interaction

TAS3 TN Model
TAS3 TN Compliance, Audit, and Monitor
Audit & Monitor
Modelling
Org B
DashB
Re B
IdP B
Back Channel
Web Services Layer
FE A1
WS A1
WS B1
WS B2
Re B
IdP B
TAS3 TN Compliance, Audit, and Monitor
Org A
Modelling
Runtime
Audit & Monitor
FE A1
WS A2
WS B1
WS B2
Audit & Monitor
Front Channel, Web GUI Interaction
Authentication
1
2, 4
3
6
5
7, 9
8
10
23.11.2009 Sampo Kellomäki: TAS3 Arch 10
Audit Channel

TAS3 TN Model
TAS3 TN Compliance, Audit, and Monitor
Audit & Monitor Audit & Monitor
Modelling Modelling
Org B
Org A

Modelling Runtime

Back Channel Web Services Layer
Audit Event Bus
Audit & Monitor

Front Channel, Web GUI Interaction
Authentication

TAS3 TN Compliance, Audit, and Monitor

23.11.2009 Sampo Kellomäki: TAS3 Arch 10
Model driven configuration
Model driven audit

Modelling and Configuration Management Domain
- Modelling Tool
- Models and configurations

Runtime and Enforcement Domain
- Discover usage & configuration
- Automatically push consistent security configuration

Audit and Monitoring Domain
- Auditing & Compliance Tools
- Operation Monitoring

Frontend Services
Dashboard
Middletier Web Services
Backend WS
IdP
Disco

Use model to drive visualization of workflow and system

Connectors
* = Routing & aggregation
= PEP

23.11.2009
Sampo Kellomäki: TAS3 Arch 10
Prior Art and Reference Architectures

- TAS3 Architecture draws from and is compatible with:
 - Nessi’s NexofRA
 - Master’s concept of audit bus and Awareness Cockpit
 - Access-eGov Platform Architecture
 - Liberty Alliance’s ID Web Services Framework (ID-WSF)
 - Hafner & Breu’s Security Engineering for Service-Oriented Architectures

- TAS3 Architecture is not as abstract as a reference architecture:
 - Goal is to drive real interoperable implementations
Novelty of the Architecture Itself (1/2)

- TAS³ Architecture is novel as a blueprint that brings together
 - Identity management
 - Attribute based access control
 - Business process modelling
 - Dynamic trust
 - Distributed auditing
 - Legal & Policy
 - Support for multiple policies in different languages
 - Annex A in combination with D2.2, acts as an interoperability profile for standards based protocols covering these areas

- User transparency features
 - Dashboard
 - User accessible audit trail
 - Automated compliance validation
Novelty of the Architecture Itself (2/2)

- Privacy protection using sticky policies
- Marriage of Trust and Privacy Negotiation with discovery and trust scoring
- Secure dynamic business processes
- Built-in first class support for delegation
- Architecture needs to be instantiated in context of a business model and legal / contractual framework
 - Leave many decisions to be decided in that context
 - Many business models are possible (the one currently in annex will become a document of its own)
Wire interoperability, many software implementations possible

- Any implementation that speaks wire protocols and flows correctly is valid, irrespective of the software architecture.
- Software architecture of the entities specified by the TAS³ Architecture is up to implementers of those entities (some of the implementer’s are TAS³ work packages).
- The architecture includes a legacy integration strategy to illustrate some feasible ways to TAS³ enable existing applications (but which way is chosen, or if a totally different software architecture is used, is an implementer’s choice).
Trustworthy and Secure (1/2)

- Operational, legal, and business model to ensure trustworthiness
 - Responsible entity, Trust Guarantor, ensures "buck stops here"
 - Legal framework developed hand-in-hand with architecture
 - Certification of software and deployments
 - Automated Compliance Validation keeps SPs in line
 - Manual audits complement automated approaches
 - Modeling network and its members provide consistent security configuration
- Legal concerns are built-in from the ground up
- Threat analysis to understand what we are defending against
Trustworthy and Secure (2/2)

- Technical
 - Fully encrypted, fully digitally signed
 - Fully pseudonymous design ensures maximum privacy
 - Fully cross organizational federation model
 - Explicit tokens based audit trail at all layers
 - Explicit authorization at all layers
 - Advanced trust and reputation management
 - Model and ontology driven to ensure accurate implementation
Deploying TAS3 Architecture

- Set up Trust Network
 - Draft legal
 - Run some services, like audit bus and compliance validation
 - Outsource or run other services like discovery and IdP

- Join a Trust Network
 - Much of the infrastructure shared or already provided
 - Application integration
 - Buy and deploy TAS3 proxy or connector product, or
 - Adapt your application using TAS3 Standard API.
 - Outsource or buy/run some infrastructure services like IdP or PDP
Thank You, Questions?
Sampo Kellomäki (sampo@symlabs.com)
+351-918.731.007

- www.tas3.org
 - Official dissemination website
- http://zxid.org/
 - Reference implementation of TAS3 Core Security Architecture
- http://zxid.org/tas3/
 - ZXID specific TAS3 news
 - TAS3 Architecture Document
 - Revised TAS3 API and protocol profiles

23.11.2009 Sampo Kellomäki: TAS3 Arch 10
Architecture Drilldown

TAS3 Trust Network Domains

Audit

Organization A Domains

...

Organization B Domains

Audit & Monitor

Modelling & configuration Management

Model

Runtime & Enforcement
Web Service Authorization

Legend

Front End Service
Web Application
PEP Out
PEP In
Stack
Service Requester

Web Service
Service Application
PEP Out
PEP In
Stack
Service Responder
Servce Requester

Infrastructure Authorization

23.11.2009 Sampo Kellomäki: TAS3 Arch 10
Multi-tier Web Service Call
Details of Authorization
Legacy Integration

Figure 1: Application Integration using ADPEP and (A) WP8 SOA Gateway, (B) WP8 as frontend to WP8 SOA GW, (C) WP8 database.
Figure 2: Application Integration: ADPEP implemented in application itself.
Figure 3: Application Integration: PEP implemented directly in application.
Steps of a Web Service Call

Alice Organization

Alice Client Application

Web service call

Can we send data?

Discover suitable service

Acceptable request?

Acceptable response? (any obligation)

PEP
TPN
Master PDP
Stack (WS)
TPN
Stack (WS)
PEP
Master PDP
Bob Service

Perform obligations
Core Security Architecture Flows

Front End service A
IDP_1
Web GUI
PDP
1
2
3
SSO
123A
Web Application
Authentication
PID E(123)A
Service Requestor

Authentication
SSO

PID E(123)A

23.11.2009 Sampo Kellomäki: TAS3 Arch 10
Acronym Expansion

TG Trust Guarantor, the organization that operates TN ("Summit")

TN Trust Network

IdP Identity Provider (SAML role, aka authentication authority)

SP Service Provider: a member organization of TN that operates Frontend and/or Web Services

Disco Service discovery, sometimes specifically identity enabled service discovery such as Liberty ID-WSF Discovery Service.

DB Dashboard, a web GUI for viewing audit records, work flow status, and/or viewing and editing privacy settings and permissions.

FE Frontend, here means web site, i.e. SP

WS Web Service, SOAP based machine to machine communication. Sometimes specifically Identity enabled web service, e.g. Liberty ID-WSF based WS.
Trust Network level model

Modelling and Configuration Management Domain

Modelling Tool

Models and configurations

Audit and Monitoring Domain

Modelling and Configuration Management Domain

Runtime and Enforcement Domain

IdP

Disco

Frontend Services

Dashboard

WS1

WS2

PDP

Trust

Master PDP

Trust Store

Policy Store

PIP

Connectors

* = Routing & aggregation

= PEP

23.11.2009 Sampo Kellomäki: TAS3 Arch 10
Modelling and Configuration Management Domain

Runtime and Enforcement Domain

Audit and Monitoring Domain

Trust Network level model

Modelling Tool

Discover actual usage

Models and configurations

Frontend Services

Dashboard

IdP

Disco

Trust Master

PDP

Policy Store

Trust Store

WS1

WS2

Connectors

* = Routing & aggregation

= = = =

Call PIP

Feedback for behavioral trust

Discover actual usage

Modelling and Configuration Management Domain

Runtime and Enforcement Domain

Audit and Monitoring Domain

23.11.2009 Sampo Kellomäki: TAS3 Arch 10